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Abstract

This paper presents Bag-of-Concept Graph
(BACON) to gift models with limited linguistic
abilities to taste the privilege of Vision Lan-
guage Models (VLMs) and reduce hallucina-
tions in the downstream tasks such as detection,
visual question answering (VQA), and image
generation. Since the visual scenes in phys-
ical worlds are structured with complex rela-
tions between objects, BACON breaks down
annotations into basic minimum elements and
presents them in a graph structure. Element-
wise style enables easy understanding, and
structural composition liberates difficult locat-
ing. Careful prompt design births the BA-
CON captions with the help of public-available
VLMs and segmentation methods. In this way,
we gather a dataset with 100K annotated im-
ages, which endow VLMs with remarkable ca-
pabilities, such as accurately generating BA-
CON, transforming prompts into BACON for-
mat, envisioning scenarios in the style of BA-
CON, and dynamically modifying elements
within BACON through interactive dialogue and
more. Wide representative experiments, in-
cluding detection, VQA, and image generation
tasks, tell BACON as a lifeline to achieve previ-
ous out-of-reach tasks or excel in their current
cutting-edge solutions.

1 Introduction

A single image can tell long stories, weaving
tales as those told across myriad pages, akin
to the masterful strokes seen in “The Last Sup-
per” (Pitre, 2015) or the vibrant dynamism of “Lib-
erty Leading the People” (Chaulagain, 2018). Yet
emerging multi-modality tasks feed on describ-
ing images with language, which is bound to be
lengthy and convoluted. Though Vision Language
Models (VLMs) (OpenAI, 2023) can now easily
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Part I: Overall description
Part1.1: Style - color painting with a dynamic 
and dramatic composition.
Part1.2: Theme - historical event, specifically 
a depiction of a revolution or uprising.
Part1.3: Global description of background - 
The painting is chaotic and filled with a 
multitude of figures, suggesting a crowded and 
tumultuous setting, …
Part1.4: Global description of foreground - 
The painting is dominated by a central female 
figure, who stands out prominently against the 
crowded and violent backdrop, ...

Image BACON

Part II: Object List
<Woman>,<flag>,<Crowd>,<Man1>, 
<Man2>,<Man3>, …
An example: <Woman>
- Category1: Living 
- Category2: Foreground
- Description: The woman's arms are raised 
high, holding a flag, She is dressed in a white 
robe and appears to be leading the crowd, …
- Color: white robe

Part III: Relationships
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Figure 1: BACON representation of an image, including
overall description, object list, and relationships.

produce those detailed annotations, downstream
multi-modality applications may not easily process
them—understanding long and intricate context is
still a privilege of VLMs and is far beyond the
ability of most popular multi-modality methods,
like those ResNet-based models (He et al., 2016a;
Huang et al., 2017; He et al., 2016b), segmentation
methods (Kirillov et al., 2023; Liu et al., 2023b;
Ke et al., 2024), and Contrastive Language-Image
Pretraining methods (CLIPs) (Radford et al., 2021;
Lee et al., 2022; Li et al., 2021). Thus, popular
multi-modality methods usually suffer from model
hallucinations, where predictions from these meth-
ods are inconsistent with input prompts. For exam-
ple, off-the-shelf image generative models such as
DALL-E 3 and SDXL cannot even count apples cor-
rectly and do not understand position relationships
between objects, generating inconsistent images
with human-provided captions (see Figure 5).

Challenges stem from two main issues: the
complexity of long phrases and the difficulty in
pinpointing specific information. Smaller mod-
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① Point question answering

② Image generationIn an exploding nebula, there is 
an erupting volcano with a 

cyberpunk style building to the 
left of the volcano. In the 

bottom right corner of the scene 
is a green river flowing with 

venom. There is a yellow duck 
on the river, and to the left of 

the river stands a crowned 
potato man. On the right bank 

of the river, there is a miniature 
version of the village.
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What color is this table? 
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bbox: 
[320, 0, 440, 70]

Target regionObj1. Apple 1.   
Description: The apple is of ‘Fuji’…
Color: red.
Obj2. Apple Tray 1. 
Description: The apple tray holds …
Color: a mix of red and yellow.
Obj3. Table 2.    
Description: The table provides ...
Color: brown.
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Figure 2: Schematic diagram of multiple exemplary downstream tasks can benefit from BACON. Specifically,
BACON can (1) enable VLMs to carry out the point question answering task previously beyond their scope; (2)
assist text-to-image generative models such as SDXL in creating intricate images with higher precision as demanded
by prompts; and (3) execute open-vocabulary scene graph generation tasks that were not feasible for other VLMs.

els like CLIPs and Segment Anything Models
(SAMs) (Kirillov et al., 2023), constrained by their
training data and resources, grasp only word-level
or phase-level language and struggle to train ex-
tensive attention mechanisms for detailed context
analysis. Thus, a critical question emerges:

Shall the meticulous breakdown of VLM annota-
tions into clearly distinguishable and comprehensi-
ble elements significantly mitigate model hallucina-
tions and elevate the performance of downstream
tasks?

Luckily, the answer is yes. This paper proposes
BACON—a neat and efficient approach for VLMs
to mitigate hallucinations and boost downstream
tasks. BACON breaks down annotations into ba-
sic elements (like objects, style of picture, rela-
tionships, etc.) within an image, which can be
easily understood by various methods. After that,
In-Context Learning (ICL) (Brown et al., 2020)
techniques are deployed to organize the annotation
into a graph, with nodes representing fundamental
visual elements and edges illustrating their connec-
tions. Illustrated in Figure 1, BACON composes
of three key parts: 1) an overall description cap-
turing the image’s overall style, theme, and key
features; 2) a detailed object list with labels and
descriptions for every item in the image; 3) the re-
lationships between these objects. The structure of
BACON allows models to flexibly extract and use
the desired parts to comprehend complex informa-
tion and accomplish tasks previously beyond their
reach (see detailed examples as Figure 2).

In conclusion, the contribution of this work can
be summarized as follows. 1) We introduce BA-
CON, a rich and digestible caption method for
boosting multi-modality tasks; 2) We collect a high-
quality BACON-Dataset using human labor and
advanced VLM models; the dataset and BACON-
Captioner trained on it will be soon open-source; 3)
The proposed method boosts wide and representa-
tive downstream tasks remarkably, demonstrating
significant potential in promoting future research.

2 Bag-of-Concept Graph

In this section, we first explain the design of Bag-of-
Concept Graph in Section 2.1, and then introduce
how to get a BACON representation from an image
in Section 2.2.

2.1 Design of BACON

BACON aims to tackle the issues faced by smaller
downstream models in understanding long phrases
and in locating specific pieces of information. For
the former, BACON deconstructs the image an-
notations into basic elements, ensuring that even
smaller downstream models can fully comprehend
them. Subsequently, BACON employs a specific
graph structure to amalgamate these elements, en-
suring each element appears in a designated spot,
allowing smaller downstream models to query and
retrieve them easily. Specifically, the real world can
often be explicitly represented using a scene graph
composed of objects and their relationships (Miller,
1995; Doddington et al., 2004; Krishna et al., 2017;

2



man

GroundingDINO

+CLIP
+CLIP&LLaVA

②Grounding
DINO

🌋
③LLaVA

(b) Ablation study(a) Detailed method of enhancing BACON
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He is wearing a hat, …

Object list
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The caption of this image is
He is wearing a hat, …, 

does it correct?

Figure 3: (a) Detailed method for graph grounding. The method contains four steps: 1) Extracting BACON from
images using GPT-4V or BACON-Captioner; 2) Getting candidate regions using Grounding DINO given the name
of the object; 3) Using LLaVA to discard blatant incorrect regions; 4) Select the region whose image feature
matches the text feature of object description the most by CLIP. (b) Ablation study of method in (a), exploring the
improvement of introducing CLIP and LLaVA, where the experiment is conducted on BACON benchmark.

Lu et al., 2016; Xu et al., 2017; Johnson et al., 2015,
2018). Inspired by this insight, we adopt the struc-
ture of a graph to deconstruct and reassemble basic
elements. When selecting these basic elements, we
have deliberately considered those that may ben-
efit downstream tasks (listed in Appendix A.2.1).
Finally, we have obtained BACON as shown in Fig-
ure 1.

Surprisingly, we discover that such a design
also significantly increases the number of cor-
rect objects included in captions (see the higher
recall score of BACON compared to GPT-4V in Sec-
tion 4.2.2). We believe this is due to the structured
object list emphasizing the distinction of separated
entities, urging VLMs to separate complex objects
into more detailed components.

2.2 Formulation of BACON

Given an image I , we aim to induce a structural
representation G = (D,O,R,B), where D is the
textual description, O is the list of objects in the
image, with R denotes their relationships and B
as their bounding box positions. In practice, we
optimize the construction of G in two stages: (1)
Graph Construction (Section 2.3), which utilizes
VLMs to generate the graph elements (D,O,R)
from the image, and (2) Graph Grounding (Sec-
tion 2.4) aligns the graph elements with the bound-
ing boxes (B) extracted by a grounding model.

2.3 Graph construction

Deconstructing annotations. BACON assists
downstream models in understanding complex
texts by decomposing the annotations of VLMs into

basic elements and then combining them according
to a specific structure. Our approach is divided
into two key parts. Firstly, we design a reversible
transformation method that converts BACON into a
string format understandable by VLMs. Illustrative
examples are provided in Appendix A.2.2. Then,
we employ the ICL technique to teach VLMs to
output following the string format we designed. We
find a few simplified examples sufficient and exe-
cute the ICL learning process in one conversational
exchange. In practice, we use GPT-4V as the VLM
and provide the final instruction in Appendix A.2.2.
Based on this approach, we develop the BACON

dataset, detailed in Section 3.
BACON-Captioner. Obtaining BACON by GPT-
4V is reliable but expensive. Therefore, we opt
to fine-tune a 13B LLaVA model on the BACON

dataset to serve as a specialized captioner, with
training details in Section A.4.1. Our goal for this
captioner is to match GPT-4V’s capability in gen-
erating BACON. We gather BACON outputs from
BACON-Captioner and GPT-4V on a test set, an-
alyzing the categories each detects and the root
nouns and verbs of their outputs. The resulting dis-
tributions, displayed in Figure 9), show a high de-
gree of similarity between them. Furthermore, the
precision and recall score calculated by manual an-
notation (the metrics are detailed as Section 4.2.2)
show BACON-Captioner achieve 91% of precision
score and 90% of recall score of that of GPT-4V.
Consequently, BACON-Captioner is a viable alter-
native to GPT-4V for producing BACON and helps
us extend BACON dataset.

Beyond generating Bacon from images, we sur-
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prisingly find that the trained captioner is also adept
at performing additional useful tasks without fine-
tuning, such as interactively modifying the items
of BACON, transforming prompts into BACON for-
mat, envisioning scenarios in the style of BACON.

2.4 Graph grounding

Space information is important for representing an
image. While VLMs have some level of ground-
ing, specialized models like Grounding DINO (Liu
et al., 2023b) significantly outperform them. There-
fore, we did not pursue the option of VLMs in
Section 2.3 delivering location details, but rather,
we intend to leverage dedicated grounding mod-
els for this purpose. Fortunately, BACON’s struc-
ture provides a list of objects required by ground-
ing models, enabling the combination of advanced
VLMs for detailing and top-tier grounding models
for precise localization within BACON.

Although Grounding DINO provides accurate
object positions, names alone fall short of distin-
guishing objects within the same category. Here,
BACON’s detailed node descriptions come into play,
allowing for precise region identification when
used in conjunction with CLIP. Moreover, we en-
hance grounding accuracy by first applying LLaVA
to filter out incorrect bounding boxes before pro-
ceeding with the CLIP step. We conducted an ab-
lation study on the BACON benchmark (with de-
tails in Section 3), and the findings, presented in
Figure 3 (b), confirm the benefits of incorporating
CLIP and LLaVA into our approach. See Figure 3
(a) for an illustration of this process.

3 BACON dataset

In this section, we introduce the BACON dataset
proposed in this paper. BACON dataset is composed
of two parts, the training set and the test benchmark,
which share different collection methods.
Training set. For the training set, we employ the
method as detailed in Section 2.3 to collect 110k
BACON-image pairs. Then, we engage in a thor-
ough manual re-annotation process to eliminate
ambiguities and incorrectness (see details in Ap-
pendix A.3). The end product is a refined dataset
of 100k high-quality image-BACON pairs. Notably,
BACON’s structure greatly streamlines the annota-
tion process. By breaking down GPT-4V’s output
into manageable sections, we can assign specific
segments to different annotators, which concen-
trates their efforts and enhances productivity. Of-

Table 1: Comparison of open-vocabulary object
detection among BACON, Grounding DINO, open-
vocabulary object detection models, and grounding cap-
tion models on BACON benchmark. GD represents
Grounding DINO. We have calculated error bars for
models that exhibit randomness.

Method AP50(↑) Recall(↑) mIOU(↑)

OV-DQUO 4.7% 10.7% 66.5%
DE-VIT 19.3% 23.8% 76.8%
GD 33.1±2.5% 20.2±0.1% 75.7±0.1%

Next-Chat 29.1±0.1% 7.7±0.1% 67.1±0.0%
Kosmos-2 34.2±4.8% 13.3±2.4% 76.1±0.4%
GLaMM 34.3% 19.8% 79.6%
BACON 37.7± 0.9% 35.9± 0.7% 79.9± 0.1%

ten, their tasks involve simple verifications like
checking colors or relationships. Furthermore, the
comprehensive nature of BACON generally spares
annotators from generating new information, allow-
ing them to focus on editing or deleting existing
content—tasks that are typically less complex.

Test benchmark. Despite the existence of graph
datasets like Visual-Genome (VG) (Krishna et al.,
2017) and PSG (Yang et al., 2022), there is still
no dataset that concurrently offers open-vocabulary
capabilities, detailed object attributes, and a com-
prehensive overall description. To address this defi-
ciency, we develop the BACON benchmark.

Despite GPT-4V’s advanced capabilities, it may
miss objects in images. For the test benchmark,
aiming for the utmost accuracy, we utilize a rigor-
ous method that relies heavily on human annota-
tors in contrast to the training set. This method, as
shown in Figure 11, starts by using SAM (Kirillov
et al., 2023) to separate each object in an image.
Next, it applies VLMs to describe all objects, list
their attributes, and explain how these objects in-
teract with each other. Finally, given the object list,
VLM provides the overall description of the image.
We leave the details in the appendix. Thanks to
SAM’s excellent performance, it is rare to miss
objects in the image. The challenge comes with
VLM’s difficulty in recognizing objects given their
masked images, which is still hard even for ad-
vanced VLMs like GPT-4V (OpenAI, 2023). This
difficulty leads to a lot of manual annotation to
correct mistakes. The high cost of manual correc-
tions is the reason why this method is not applied
to create our training set. Finally, we annotated a
test benchmark containing around 3k images, 27k
objects, and 148k relationships.
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Figure 4: Quantitative comparison on (a) PointQA
and (b) PointingQA between BACON and baselines.

Table 2: Comparison on open-vocabulary scene
graph generation task between BACON and multiple
baselines on VG dataset and BACON benchmark. The
number of correct predictions is used as the metric (↑).

Method Visual-Genome BACON dataset

PSGFormer 1.45K 0.21K
PSGTR 0.33K 0.07K
IMP 3.16K 1.28K
Gps-net 3.13K 1.16K
Motifs 3.05K 1.25K
VCTree 3.11K 1.24K
BACON 11.45K 1.44K

4 Experiments

In this section, we show that BACON can be ap-
plied to help multiple downstream tasks by flexibly
utilizing desired parts of information and the re-
markable capabilities of BACON-Captioner. First,
in Section 4.1, we show BACON can help a wide
range of downstream tasks by flexibly utilizing de-
sired parts of BACON. Then, for completeness, we
discuss some special cases in Section 4.2 where
BACON can be directly utilized without any special
operations. Next, in Section 4.3, we show some
impressive capabilities of BACON-Captioner. Fi-
nally, in Section 4.4, we show BACON can be easily
generalized to video dense-captioning task.

4.1 Downstream tasks benefiting from BACON

The adaptable nature of BACON’s structure en-
hances models’ comprehension of complex text
and empowers them to undertake tasks previ-
ously beyond their reach. We conduct evaluations
across five downstream tasks, including object de-
tection (Section 4.1.1), point question answering
(PointQA) (Section 4.1.2), Pointing question an-
swering (PointingQA) (Section 4.1.3), scene graph
generation (SGG) (Section 4.1.4), and image gen-
eration (Section 4.1.5).

Table 3: Quantitative comparison of VQA task
between BACON and multiple VLM-based baselines,
where the input image of the QA model is replaced by
its caption to evaluate the performance of the captioner.
The metric is the accuracy of answering questions (↑).

Method NLVR2 OK-VQA VQAv1 VQAv2

LLaVA 56.3 % 30.9 % 50.0 % 64.1 %
ShareGPT-4V 57.5 % 31.4 % 50.7 % 65.4 %
Qwen-VL-max 56.8 % 29.0 % 46.0 % 65.6 %
BACON 59.1 % 32.1 % 52.6 % 66.4 %

4.1.1 Open-vocabulary object detection
Grounding DINO struggles to differentiate between
multiple objects of the same category during open-
vocabulary object detection (OVD) task (Exam-
ples are shown in Appendix A.4.2). However,
thanks to the structural features of BACON, the
approach described in Section 2.4 can be lever-
aged to address this issue, significantly enhancing
Grounding DINO’s performance in OVD task. We
compare the performance with grounding caption
models, including GLaMM (Rasheed et al., 2024),
Kosmos-2 (Peng et al., 2023), Next-Chat (Zhang
et al., 2023), and two of the SOTA dedicated OVD
models, OV-DQUO (Wang et al., 2024a) and DE-
VIT (Zhang et al., 2024) as baselines on BACON

benchmark, with AP50, recall and mIOU used as
the metrics. Results in Table 1 show that BACON

enables grounding models to perform OVD task
and outperform all evaluated baselines.

4.1.2 Point question answering
Point Question Answering (PointQA) (Mani et al.,
2020) aims to answer region-related questions ac-
cording to an input image. Inspired by the set-
ting of zero-shot visual question answering (ZS-
VQA) (Guo et al., 2023), we replace the input of
the QA model from images to their captions to
evaluate the performance of captioners. Intuitively,
if a fixed QA model can correctly answer more
questions using a given caption, it suggests that the
caption contains more accurate information, indi-
cating a superior captioning performance.

This task is extremely difficult for VLMs like
LLaVA because they can’t match parts of the cap-
tion to image regions. But BACON aids LLaVA
in finding relevant descriptions for a given area
(we’ve detailed the method in Appendix A.4.3). We
use grounding caption models, including GLaMM,
Kosmos-2, and Next-Chat, as baselines. Besides,
we apply LLaVA as the fixed QA model and uti-
lize the QA accuracy as the metric. Results on
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Table 4: Accuracy in depicting objects (Ao) and
relationships (Ar) in images generated from text
prompts, as evaluated by human. We compare SDXL
enhanced by BACON with SDXL and DALL-E 3.

Method Ao(↑) Ar(↑)

SDXL 59.20±3.96% 41.45±3.46%
DALL-E 3 90.05±4.17% 71.60±3.39%
BACON + SDXL 95.20± 1.13% 76.65± 0.92%

LookTwice-QA dataset (Mani et al., 2020) shown
in Figure 4 (a) indicate BACON can help VLMs
associate descriptions with regions to perform
PointQA tasks and surpass all baselines.

4.1.3 Pointing question answering
Pointing Question Answering (PointingQA) (Zhu
et al., 2016) asks models to choose the correct re-
gion from various options based on a given ques-
tion, using only the input image. Following the
settings in Section 4.1.2, we replace the input
from images to corresponding captions to eval-
uate the performance of captioners. BACON can
help LLaVA with the task, which is originally be-
yond its capabilities (details in Appendix A.4.4).
Again, we chose the grounding caption models,
including GLaMM, Kosmos-2, and Next-Chat, as
baselines and used the accuracy of selecting regions
as the metric. Results on Visual-7W dataset (Zhu
et al., 2016) in Figure 4 (b) show that BACON can
help LLaVA find the correct region according to
the requirement and significantly outperform the
baselines, whose performances are even worse than
randomly selecting.

4.1.4 Scene graph generation
The scene graph generation (SGG) task focuses
on identifying (subject-predicate-object) triplets
in images. Traditional SGG models are trained
to classify items in the triplet within a finite set
of categories, which may not be suitable for real-
world applications. However, the open-vocabulary
(OV-SGG) setting, closer to the real situation, is
extremely hard for those SGG models. Fortunately,
BACON-Captioner can perform the OV-SGG task
without any fine-tuning as BACON provides the
relationships part. We compare the performance
of OV-SGG between BACON-Captioner with mul-
tiple specialized SGG approaches including Mo-
tifs (Zellers et al., 2018), GPS-Net (Lin et al.,
2020), VCTree (Tang et al., 2019), PSGTR, PS-
GFormer (Yang et al., 2022), and IMP (Xu et al.,
2017) on two datasets, VG (Krishna et al., 2017)

(see details in Appendix A.4.5) and BACON bench-
mark. To calculate the open-vocabulary metrics,
we apply CLIP similarity to decide whether a pre-
diction is correct. The number of correct predic-
tions is used as the evaluation metric (as detailed
in Appendix A.4.5). The results shown in Table 2
demonstrate that BACON can perform the OV-SGG
task, which is out-of-reach for VLMs and substan-
tially outperforms purpose-built SGG models.

4.1.5 Image generation
Advanced text-to-image models like SDXL (Podell
et al., 2023) struggle to follow complex text
prompts and accurately generate images. Fortu-
nately, BACON allows generative models to sep-
arately generate the background and different ob-
jects and then merge them, thus splitting the chal-
lenge into several easy parts (Detailed method can
be found in Appendix A.4.6). We show two exam-
ples in Figure 5 with more instances available in
Appendix A.4.6. To assess the correlation between
the text prompts and the generated images, we con-
duct a user study involving 10 human annotators
and 100 samples. They are tasked with counting
the significant objects and relationships mentioned
in the text prompts and those accurately generated
in the images. Utilizing the manual annotation, we
compute the accuracy metrics for objects (Ao) and
relationships (Ar), with the details in Table 4. The
results demonstrate that BACON significantly en-
hances SDXL’s ability to understand and follow
complex prompts. Remarkably, it enables SDXL
to surpass DALL-E 3 in faithfully reproducing the
details specified in the text descriptions.

4.2 Tasks directly using BACON

In this section, for completeness, we discuss down-
stream tasks where BACON can be used directly
without special operations.

4.2.1 Visual question answering
Following the setting of ZS-VQA and Section 4.1.2,
we replace the input of VQA from images to
their captions to evaluate the performance of
the captioner. We compare BACON-Captioner
with multiple VLM-based captioners including
LLaVA (Liu et al., 2023a), Qwen-VL-max (Bai
et al., 2023), and the distillation version on caption
task of GPT-4V, ShareGPT-4V (Chen et al., 2023a)
on multiple commonly used VQA detasets includ-
ing NLVR2 (Suhr et al., 2018), VQAv1 (Antol
et al., 2015), VQAv2 (Goyal et al., 2017), and OK-
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Caption BACON + SDXL DALL-E 3 SDXL

At the center of the screen is a man wearing a black suit and a red tie, riding on the 
back of a dinosaur. The dinosaur stands on the green grass, opening its mouth to 
reveal its sharp teeth. In the bottom right corner of the screen, a photographer wearing 
a black coat squats, focusing on capturing this unique scene with a camera. The mid 
shot features two trees with sparse leaves. In the background, there are two colorful 
hot air balloons flying in the sky. One is black, located in the upper right corner of the 
screen, and the other is colorful, located slightly higher in the middle of the screen

The full moon hangs high on the left side of the sky, with stars dotted around it. The 
background on the left side of the picture is a magnificent castle, standing on a distant 
hill. In the bottom left corner of the photo, two people are standing hand in hand on a 
rock by the river. Men are on the left, women are on the right, and the river winds 
from their feet towards the distance. On the right side of the picture is a male angel 
holding a trumpet and spreading his wings. Above the angel, there is a glowing flying 
saucer suspended in the air.

Figure 5: Comparative examples of image generation reveal that BACON enhances advanced generative models
like SDXL. SDXL and DALL-E 3 struggle with complex text and fail to produce corresponding images. Remarkably,
BACON not only elevates SDXL’s image quality but also markedly boosts its comprehension of intricate instructions,
enabling it to surpass DALL-E 3 in terms of accurately generating images aligning with textual directives.
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ShareGPT4v

GPT-4V

LLaVA

Qwen-max
Others

*

*

*

*

BACON

Figure 7: Win rate of pairwise comparisons between
BACON-Captioner and other VLM-based captioners.

VQA (Marino et al., 2019). For evaluation mea-
surement, we follow the official evaluation metrics
to measure the performance. As shown in Table 3,
BACON outperforms all baselines.

4.2.2 Precision & recall and user study

To assess the performance of the BACON-Captioner,
we conduct a user preference user study and exam-
ine the precision and recall score by manual annota-
tion. We compare BACON-Captioner with various
VLM-based captioners, including LLaVA, Qwen-
VL-max, ShareGPT-4V, and GPT-4V, by analyzing
captions produced for a randomly sampled set of
200 images from the MSCOCO dataset (Lin et al.,
2014). We engage 10 human annotators for manual
labeling. For the precision and recall scores, we
first extract all important nouns existing in the cap-

Table 5: Precision & recall score calculated by man-
ual annotation between BACON-Captioner and other
VLM-based captioners.

Method Precision Recall

LLaVA 36.35±1.48% 59.15±4.74%
ShareGPT-4V 23.20±3.82% 55.30±2.12%
Qwen-VL-max 35.20±5.94% 57.50±1.98%
GTP4v 21.5±0.71% 70.55± 13.36%
BACON 56.23± 4.23% 82.83± 8.33%

tions (see details in Appendix A.4.7) and then ask
annotators to count the number of objects in the im-
age and the number of correct predictions in the ex-
tracted nouns. Then, the precision and recall score
can be calculated. In the user preference study,
annotators select their preferred annotation in pair-
wise comparisons, ensuring structural aspects are
neutralized to prevent any biases. The outcomes,
as shown in Figure 7 and Table 5, indicate BACON

outperforms all comparisons in general, notably
predicting more correct objects than multiple
popular VLMs even containing GPT-4V.

4.3 Additional capabilities of captioner

Beyond obtaining BACON from images, the trained
captioner is also adept at performing additional use-
ful tasks, including interactively editing BACON,
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floor curtain candelabra(1) man(1)

Example 1: man(1)  Category 1: Living   Category 2: Foreground
Description: The man1 is covered with a patterned shirt…. and he stands with a hat and a relaxed 
posture. 
Color: black vest and pants, white shoes. 
Example 2: candelabra(1) Category 1: Inanimate   Category 2: Foreground
Description: The candelabra stands to the left of the man, featuring a base and stem that holds 
several candles that are lit. … It provides a warm glow to the immediate area.
Color: gold stem and base, white candles with yellow flames.

Example 1: man(1)  Category 1: Living   Category 2: Foreground
Description: The man1 is covered with a patterned shirt…. and he stands with a hat and a relaxed 
posture. His right hand supported the brim of his hat.
Color: black vest and pants, white shoes.
Example 2: candelabra(1) Category 1: Inanimate   Category 2: Foreground
Description: The candelabra stands to the left of the man, featuring a base and stem that holds 
several candles that are lit. … It provides a warm glow to the immediate area.
Color: gold stem and base, white candles with yellow flames.

Example 1: man(1)  Category 1: Living   Category 2: Foreground
Description: The man1 is covered with a patterned shirt…. and he stands with a hat and a relaxed 
posture. His right hand supported the brim of his hat. He clasped his hat in his left arm.
Color: black vest and pants, white shoes. white shirt, red tie, and white waistcoat.
Example 2: man(2)  Category 1: Living   Category 2: Foreground
Description: Man2 has short hair and is dressed in a dark suit with a vest and white pants…. His 
feet are in black shoes.
Color: dark suit, white dress shirt, black tie, black shoes.

Example 1: man(1)  Category 1: Living   Category 2: Foreground
Description: The man1 is covered with a patterned shirt …. and he stands with a hat and a 
relaxed posture. He clasped his hat in his left arm.
Color: black vest and pants, white shoes. white shirt, red tie, and white waistcoat.
Example 2: candelabra(1) Category 1: Inanimate   Category 2: Foreground
Description: The candelabra stands on the stage, holding several candles that are lit. … It is made 
of metal with a design that curves outward at the top
Color: gold stem and base, white candles with yellow flames.
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Figure 8: An example of BACON on video captioning, which includes three components: an overall description,
an object list, and their relationships, each dynamically evolving over time. With respect to a prior frame, updates
are color-coded: new elements in green, removed in red, altered in gold, and persistent ones in black. BACON thus
adeptly captures the temporal changes and salient details of each video frame, while its structured nature potentially
aids in downstream model comprehension.

transforming ordinary prompts into BACON format,
and planning positions of objects in BACON. First,
as shown in Figure 6, BACON-Captioner allows us
to interactively edit the BACON, and thus affect the
generation of images.

Subsequently and remarkably, without any fine-
tuning, BACON-Captioner can transform an ordi-
nary prompt into a BACON. For short prompts, it
can add details to create a BACON, and for longer,
it can organize the given information into a BACON.
Moreover, the BACON-Captioner can arrange the
positions of objects of the BACON. We provide ex-
amples of both expanding and organizing prompts
in Appendix A.4.8. We quantitatively compare
BACON-Captioner’s capability of planning with
LayoutGPT (Feng et al., 2024) on the MSCOCO
dataset (Lin et al., 2014) and BACON datasets, us-
ing the mIOU, precision and recall metrics (Feng
et al., 2024) as detailed in Appendix A.4.8. Results
in Table 6 indicate that BACON-Captioner performs
better than LayoutGPT on both evaluated datasets.

4.4 BACON on video captioning

While BACON is primarily developed for image
data, it can be extended to create structured cap-

Table 6: Comparison of plan task between BACON and
LayoutGPT (Feng et al., 2024) on both MSCOCO (Lin
et al., 2014) and BACON benchmark.

Dataset Method Precision Recall mIOU

MSCOCO LayoutGPT 70.12% 39.74% 4.07%
BACON 71.18% 41.84% 6.83%

Bacon LayoutGPT 50.79% 29.16% 9.12%
Dataset BACON 51.66% 47.06% 18.39%

tions for videos with the help of additional tech-
niques that address the temporal dimension of
video content. The principal challenge of adapting
BACON for videos is distinguishing between ele-
ments that change over time and those that remain
constant. To resolve this, we employ a tracking
method (Cheng et al., 2023) to identify and match
the same object across different frames. Further-
more, we use T5 (Raffel et al., 2020) as the text
encoder to compare descriptions of the same ob-
ject or scene segment across frames. Parts of the
text with high similarity scores are considered sta-
ble, while those with low similarity are deemed
to have changed. An example shown in Figure 8
demonstrates this approach efficiently captures the
continuity and evolution of video content, provid-
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ing a coherent and descriptive narration. Additional
examples are available in Appendix A.4.9.

5 Conclusion

In this paper, we introduce BACON to address the
difficulty of downstream models in understanding
complex texts by breaking down complex annota-
tions into basic minimum elements and presenting
them in a graph structure. We propose a novel
method for obtaining the structural representation
from images and constructing a dataset of 100k
scale based on it. A captioner is trained on this
dataset with multiple remarkably useful capabili-
ties. Extensive experiments demonstrate that our
method can effectively assist downstream models
in accomplishing tasks they previously could not
achieve or excel in their current cutting-edge solu-
tions.

6 Limitations

This paper introduces a method designed to as-
sist smaller models in comprehending complex
texts and to facilitate their integration with VLMs,
achieving remarkable performances across multiple
benchmarks. However, despite these achievements,
our approach still faces certain limitations. Firstly,
given the absence of a fully automated method
that guarantees reliable quality, our data collec-
tion process still necessitates human annotation
involvement. Secondly, due to cost and resource
constraints, the captioner’s localization capabilities
remain insufficient, necessitating the combination
of a grounding model to obtain high-quality posi-
tional information.
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A Appendix

The appendix is organized into five distinct sections.
It begins by presenting a comprehensive overview
of related work in Appendix A.1. This is followed
by an in-depth discussion of the methodology in
Appendix A.2. The next section, Appendix A.3,
focuses on the aspects of human annotation within
the dataset collection process for BACON. Ap-
pendix A.4 then provides a thorough explanation of
the experimental setup, detailing the metrics used
and the methodology for implementing BACON in
solving downstream tasks. Moreover, this section
includes additional experimental findings.

A.1 Related works

Image description Transforming images into tex-
tual descriptions is a quintessential task, with
many downstream applications relying on accu-
rate text-based representations of visual data (Rad-
ford et al., 2021; Antol et al., 2015; Podell et al.,
2023; Betker et al., 2023; Liu et al., 2023b; Frome
et al., 2013). Traditional methods for image cap-
tioning usually suffer the problem of lacking de-
tails (Anderson et al., 2018; Mao et al., 2016;
Kazemzadeh et al., 2014; Sharma et al., 2018;
Vinyals et al., 2015). Recently, VLM-based models
including GPT-4V (OpenAI, 2023), LLaVA (Liu
et al., 2023a), ShareGPT-4V (Chen et al., 2023a),
InternVL (Chen et al., 2023b), Qwen-VL (Bai et al.,
2023) and so on, can describe images in very detail
and output very long captions, which have been
proved helpful in the downstream fields, such as
image generation (Betker et al., 2023).
Decomposing description However, overly com-
plex texts pose significant challenges to the com-
prehension abilities of downstream models. Take
the domain of text-to-image generation as an exam-
ple, where representative models like SDXL (Rom-
bach et al., 2022) struggle to accurately generate
images based on detailed textual guidance. This
has spurred a plethora of efforts aimed at decom-
posing and reassembling texts to enhance mod-
els’ fidelity to intricate instructions (Yang et al.,
2024; Wang et al., 2024b; Gani et al., 2024). There
are also works trying to describe the image in a
graph structure, including grounding caption mod-
els (Peng et al., 2023; Zhang et al., 2023; Rasheed
et al., 2024) and scene graph generation (SGG)
models (Xu et al., 2017; Zellers et al., 2018; Lin
et al., 2020; Tang et al., 2019; Yang et al., 2022).

A.2 Supplementary of BACON

In this section, we will delve into the details of
the BACON method as a supplement to the main
text. We will organize this section following the
structure of the main text, including additional in-
sights into the design philosophy behind BACON in
Appendix A.2.1, as well as showcasing complete
examples. In Appendix A.2.2, we will present the
details and examples of the graph construction.

A.2.1 Design of BACON

As mentioned in the main text, when breaking
complex annotations down into basic elements, we
specifically considered information that could be
beneficial for downstream tasks as these basic ele-
ments. We then listed these basic elements along-
side the potential domains that might benefit from
them, as illustrated in Section 6. Besides, we pro-
vide several complete examples of BACON in Fig-
ures 13 and 14, which are omitted in the main paper
to save space.

A.2.2 Graph construction
In the main paper, we introduced the method of
constructing graphs using VLMs but omitted some
details due to space constraints. The method en-
compasses two key steps. The first is to design a
string format along with a reversible conversion
method that can transform BACON into the string
format understandable by VLMs, while also ensur-
ing that this string format can be converted back
to BACON without loss. The second step involves
utilizing the ICL technique to teach the VLMs to
describe images using our designed string format.
We will now introduce these two steps in detail.
BACON in string format We translate the graph
structure of BACON into a string format inter-
pretable by VLMs (we use GPT-4V in practice),
demarcating various sections with unique symbols,
where an example is shown in Figure 15. Specifi-
cally, we label main titles with %% and subtitles
with &&. When listing objects, we enclose ex-
tra details like category, description, and color in
brackets (). Each detail is separated by a semi-
colon ";". We mark the name of an object with
<>. During the description of relationships, we
use <> for showing objects and [] for the predicate.
Additionally, we use <> to highlight important ob-
jects within the object, serving multiple purposes.
One such function is to post-process the GPT-4V
output results. This involves removing foreground
information from the background description by
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Part of information Potential areas of benefit

Style Art classification, Style transfer, Aesthetic evaluations
Theme Recommendation systems, Thematic analysis
Background Scene reconstruction, Virtual reality
Foreground Focus analysis, Subject tracking, Interactive applications
Object name Object detection, Labeling, Database organization, Language-based image retrieval
Object category Semantic segmentation, Hierarchical classification
Life status Behavior Prediction, human-computer interaction, Living identification
Depth cues Depth estimation, Layered generation, Compositing
Object description Fine-grained recognition, region captioning, region multi-modal understanding, Image generation
Object color Color-based retrieval, Fashion industry applications, Image coloring
Relationships Scene understanding, Action recognition

Table 7: List of different important parts of information and the potential fields that may benefit from them. Depth
cues represent the foreground-background information of objects.

deleting sentences where the foreground objects
appear, or similarly, eliminating background infor-
mation from the foreground description. By using
these special symbols to separate different sections,
we can effortlessly organize the string format of
BACON into a dictionary using regular expressions.
This makes it easy for downstream tasks to extract
various pieces of information without any hassle.
Instruction for GPT-4V to obtain BACON Then,
we discuss the method of applying ICL technique
to obtain BACON via VLMs (we use GPT-4V in
practice) in detail. As described in Section 2.3,
we discover that GPT-4V does not require exhaus-
tive examples to master the desired format. We
simply need to insert a few important examples in
the right spots within the instruction, which then
play a key role. You can see the final instruction in
Figure 16, where we’ve highlighted the critical ex-
amples in orange. Among the examples used, some
are specific and others are more general. We’ve ob-
served that for straightforward structural elements,
general examples are quite effective. For instance,
just a few lines, like ’lines 3-4’ or ’lines 8-9’, can
adequately indicate the use of special symbols in
a section, eliminating the need for a full-fledged
example. In lines 21-22, we present a general ex-
ample that clearly delineates the structure of each
object, which significantly minimizes GPT-4V’s
errors. To keep object details easy to grasp, we use
a general example lines 23-24, which are sufficient
for producing simple sentences. Regarding lines
27-28, a general example is enough to instruct GPT-
4V on the basic pattern for depicting relationships.
Lastly, a general example set out in line 29 aids
in preventing GPT-4V from repeatedly generating
two-way relationship pairs.

However, our high demands on the content and
structure are extremely hard even for GPT-4V.

Therefore, GPT-4V sometimes gets details wrong,
like missing special symbols, even when we use
general examples. That’s why we need to use spe-
cific examples to make sure GPT-4V really gets
the structure. Take numbering items in the same
category, for instance, we introduce a specific ex-
ample in lines 14-15. Without this example, GPT-
4V tends to forget to number the items correctly,
even though we’ve already required it in lines 13-
14. Also, we noticed GPT-4V does well with the
format of the first section but often slips up with the
second and third parts, which complicates turning
the data into a dictionary. By providing only one
clear example for these sections, GPT-4V is much
more likely to produce the right structure. The
ICL technique has helped ensure that nearly all of
the 110k data entries we’ve gathered are formatted
correctly and can be translated into a dictionary
format.

A.3 Supplementary of BACON dataset

In this section, we begin by examining the output
distribution of BACON-Captioner, as detailed in
Appendix A.3.1. Subsequently, we introduce the
details of human annotation, covering both the col-
lection of training data and the establishment of
test benchmarks.

A.3.1 Output distribution of
BACON-Captioner

We show the analysis of the root words and cate-
gories detected in the outputs of BACON-Captioner,
which can be seen in Figure 9. The result clearly
shows that the output pattern of BACON-Captioner
is very close to that of GPT-4V. Notably, there’s a
100% overlap in the top 100 frequent nouns, 99%
for verbs, and 97% for categories detected by GPT-
4V and BACON-captioner. This similarity confirms
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Root verbs – BACON-Captioner

Root verbs – GPT-4VRoot nouns – GPT-4V

Root nouns – BACON-Captioner Detected categories – BACON-Captioner

Detected categories – GPT-4V

Figure 9: Analyzing the root words and detected categories in BACON’s output on testset: We compare the root
words and detected categories generated by BACON-Captioner and GPT-4V, with certain sections magnified for
clearer visualization. The results reveal that the output distribution of BACON closely resembles that of GPT-4V.

that BACON-Captioner can effectively take over
from GPT-4V in generating BACON from images
and extend our BACON dataset.

A.3.2 Human annotation
As we’ve mentioned in Sections 2.3 and 3, creating
the BACON dataset’s training and test sets involves
human annotations.
Collecting training data. In the process of col-
lecting training data, BACON significantly reduces
the workload of annotation. It breaks down the
complex descriptions into basic elements, for many
of which annotators simply need to make a straight-
forward judgment of right or wrong, a task that
is remarkably simple. For large pieces of infor-
mation such as background or foreground descrip-
tions, annotators are asked to separately determine
if each sentence is correct according to the image.
Besides, the annotators are asked to add objects
missed by GPT-4V. In this process, the structure
we designed for objects can help annotators sim-
plify the description process. They only need to fill
in the corresponding information according to the
structure.
Collecting test benchmark. In the method of col-
lecting the test set of BACON, annotators are in-
volved in four parts. For the first part, they are
expected to correct the result returned by VLMs to
recognize the object name given the masked image.
In the second and third parts, annotators are asked

Table 8: Complete hyper-parameters of training BA-
CON-Captioner.

Hyper-parameter Value Hyper-parameter Value

Lora rank 128 Learning rate 2×10−4

Epochs 3 Warmup ratio 0.03
Batch size 16 Max length 2048

to separately determine if each sentence is correct.
They don’t have to add objects as Segment any-
thing (SAM) (Kirillov et al., 2023) in this method
has ensured that there will be no omissions. At the
last stage, they have to determine if a relationship is
correct and add an important relationship omitted
by VLMs.

A.4 Supplementary of experiments

In this section, we provide supplementary expla-
nations for the experimental details omitted in the
main text (Section 4), including the training de-
tails of BACON-Captioner, the specific manner in
which BACON aids downstream tasks, the exact
calculation methods for metrics, and any special
processing applied to the datasets. We will organize
this section following the structure of the main text
(Section 4) to facilitate readers in quickly locating
the corresponding section for each experiment.
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What color is this table? 
Question

bbox: [320, 0, 440, 70]
Bounding box

🌋
LLaVA

BACON

Obj1. Apple(1).     Bbox: green
Category: Living. Foreground.  
Description: The apple is of ‘Fuji’…
Color: red.
Obj2. Apple Tray(4). Bbox: blue
Category: Inanimate. Foreground.  
Description: The apple tray holds …
Color: a mix of red and yellow.
Obj3. Table(2).     Bbox: yellow
Category: Inanimate. Background.  
Description: The table provides ...
Color: brown.

Large IO
U

BrownAnswer

Which one contains a cut apple in it?
QuestionCandidates:

Text
Encoder

Obj1. Apple(1) Score: 0.614

Obj2. Apple(2) Score: 0.915

…(Other objects with score)

BACON

Obj1. Apple(1) IOU: 0.293

Obj2. Apple(2) IOU: 0.347

…(Other objects with IOUs)

…(Other Candidates with weights)

Candidate 4   Weight: 0. 7772

…(Other Candidates with weights)

𝑓

𝑓 =
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Candidate 4 
Answer argmax weight

(1) (2) (3) (4)

Question

Obj1. Apple(1). 
Description: The 
apple is of ‘Fuji’  
with a red skin…
Obj2. Apple(2).
Description: The 
apple is of ‘Fuji’ 
with a red skin. It is 
cut…

(a) PointQA task

(b) PointingQA task

Figure 10: An illustrative diagram depicting how BACON aids downstream models in executing PointQA
and PointingQA tasks. In (a) the PointQA task, a list of objects and their corresponding descriptions provided by
BACON are utilized. The description of the object with the large overlap with the target region is used to represent
the description of that region; this regional description is then fed into a QA model to answer questions related to
the region. In (b) the PointingQA task, object descriptions provided by BACON are used to calculate similarity
scores with the input question, generating scores for each object. Based on the overlap between object positions and
candidate regions, a weighted sum of all object scores is computed to assign scores to candidate regions; the region
with the highest score is then selected as the prediction.

A.4.1 Details of training BACON-Captioner

BACON-Captioner is fine-tuned on a pre-trained
13B LLaVA model using Low-Rank Adaptation
(LoRA) (Hu et al., 2021) technique, where the num-
ber of parameters of LoRA adapter is around 0.5B.
We follow the default settings of LLaVA-lora fine-
tuning, where the detailed hyper-parameters are
in Table 8. The captioner is trained on NVIDIA
A100 GPUs, taking around 100 GPU hours. We’ve
done this in hopes of making it easier for others to
reproduce BACON-Captioner.

A.4.2 Open-vocabulary object detection

Although Grounding DINO can carry out open-
vocabulary object detection task, it still faces some
issues. There are primarily two problems. First, the
core step of Grounding DINO requires a noun as in-
put to locate the position of that noun in the image.
Moreover, it introduces methods to extract a se-
ries of nouns from a sentence description, enabling
it to perform object detection tasks. However, the
method of extracting nouns can sometimes err, lead-
ing to Grounding DINO producing some bizarre

labels. For example, as illustrated in Figure 12,
Grounding DINO outputs ambiguous labels such
as “one”, "four men one one gray", "another".

The second issue, which is more severe, is
Grounding DINO’s difficulty in distinguishing be-
tween different individuals of the same category.
As shown in Figure 12, although Grounding DINO
identifies four people, it is challenging to determine
which individual is represented by which bounding
box with vague labels like "four men one". Note
that the BACON benchmark serves as such a com-
plex benchmark, incorporating numerous scenarios
that more closely mirror real-life situations where it
is necessary to distinguish different objects within
the same or similar categories.

Benefiting from BACON’s powerful capabilities,
Grounding DINO can overcome these two issues
with the aid of BACON. For the first problem, BA-
CON inherently possesses the ability to identify
important objects in an image, allowing Ground-
ing DINO to receive a list of objects from BACON,
resulting in a more accurate and comprehensive
list of nouns. Regarding the second issue, as intro-
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Image

SA
M

Segmentation list

…(more segment)

Please describe the part of an image …
Instruction

GPT-4V

Name: Road    Category1: Inanimate    Category2: Background
Description: The road is a black asphalt surface with red edges. …
Color: black paved surface, …

Name: Motorcycle    Category1: Inanimate    Category2: Foreground
Description: The motorcycle is parked on the road, .…
Color: Green motorcycle, silver metal frame, …

…(more object descriptions)

GPT-4V

(2) List of objects

Style: The style is…  
Theme: The theme…
Global description of background: 
 The background of …
Global description of foreground: 
 The foreground is…

(1) Overall description

GPT-4V

<Motorcycle> [is parked on] <road>
<People1> [is next to] <People2>
<Motorcycle> [is next to] <Billboard>
…

(3) Relationship

BACON (1) Overall description (2) List of objects(3) Relationship

Combined 
segmentation

…(more)

Figure 11: A detailed overview of the method used to collect the BACON benchmark, segmented into five
distinct steps. 1) The SAM model segments all components within the image. 2) VLMs identify the names of
objects in the masked image obtained from the first step. 3) Using the names identified in the second step, VLMs
annotate each object in detail. 4) VLMs generate an overall description of the image based on the list of objects
derived from the above steps. 5) images created by randomly pairing two masked images from the first step are fed
to VLMs to identify the relationship between the combined segments. It is important to note that human annotation
is required to correct and verify the outputs from steps two through five.

duced in Section 2.4, by utilizing the list of objects
provided by BACON, along with detailed descrip-
tions of each object, it is possible to post-process
Grounding DINO’s predictions. This enables the
precise distinction of different individuals within
the same category label.

A.4.3 Point question answering
Method of applying BACON. In our experiment,
PointQA is designed to answer questions related
to image regions based on the description of the
image. Most descriptions provided by Visual Lan-
guage Models (VLMs) cannot accomplish this task
as their descriptions lack positional information.
However, BACON provides both the positional in-
formation of objects within the image and their
corresponding descriptions. Given a target area, by
combining descriptions of different objects based
on their positional relationships, one can create a
description relevant to the location. Specifically,
as illustrated in Figure 10, we compute the Inter-
section Over Union (IOU) between the target area
and the positions of all objects. By combining
the descriptions of objects with high overlap, we
obtain a description that is closely related to the
target area. Then, we feed this description to the
question-answering model to answer the question.

A.4.4 Pointing question answering
Method of applying BACON. The PointingQA
task requires selecting the most appropriate region
from a set of candidate areas based on a textual

prompt. VLMs struggle to complete this task be-
cause they often lack the ability to perceive input
location information. However, since BACON de-
composes image descriptions into a series of basic
elements, each with its corresponding location, we
can leverage this feature to accomplish the task.
As shown in Figure 10, the method is divided into
three steps. First, we calculate the CLIP similarity
between each object’s description and the input tex-
tual prompt, obtaining scores for each object. The
more relevant an object is to the text description,
the higher its score. Secondly, we calculate scores
for each candidate region by weighting the sum of
object scores based on the overlap between the can-
didate region and the object’s location. The greater
the overlap with the candidate area, the larger the
proportion of that object’s score. In the third step,
the region with the highest score is selected as the
answer.

A.4.5 Open-vocabulary scene graph
generation

Visual Genome dataset. Visual Genome is an
open-vocabulary dataset. However, since most cur-
rent scene graph generation (SGG) models only
consider a certain number of categories, researchers
often treat it as a dataset with a limited set of cate-
gories. Specifically, they usually identify the most
frequent 70 or 150 noun classes, along with the
50 most common predicates, to create a filtered
dataset. In our case, as we are working on an
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GroundingDINO

Caption:
Four men are working together, one is wearing 

black clothing, one is in white, and one is in 
gray. There is another one looking at his phone.

Figure 12: An example of Grounding DINO undertaking an open-vocabulary task, where it encounters issues
with ambiguous labels and faces challenges in distinguishing between different individuals within the same category.

open-vocabulary scene graph generation (OV-SGG)
task, we treat the VG dataset as an open-vocabulary
dataset, retaining all of its annotations.
Evaluation metrics. Traditional SGG tasks often
use recall-related metrics to evaluate performance,
that is, how many (subject-predicate-object) triplets
are predicted in an image. However, these met-
rics cannot be directly applied to assess the perfor-
mance of open-vocabulary tasks. This is because
previous metrics involve performing classification
tasks within a set of fixed categories and using
the confidence of those classifications to obtain
the top K predictions with the highest likelihood.
However, in an open-vocabulary scenario, there
are theoretically an infinite number of possibili-
ties, making it impractical to calculate and sort all
scores. Therefore, we use the number of correctly
predicted triplets in the dataset as the evaluation
metric. The more triplets are accurately predicted,
the better the performance.

Additionally, we use CLIP to determine the
correctness of predictions on an open-vocabulary
dataset. Given a prediction, it is considered correct
as long as the CLIP similarity of its subject, predi-
cate, and object to the corresponding ground truth
exceeds a certain threshold (0.85 here), and the
IOU between the positions of the subject and ob-
ject with the ground truth also surpasses a threshold
(0.5 here).

A.4.6 Image generation

Method of enhancing SDXL by BACON. Even
as one of the most renowned models for text-to-
image generation, SDXL often struggles to under-
stand complex prompts and generate precise im-
ages accurately. This is primarily because SDXL
employs CLIP for text understanding, which lim-
its its ability to comprehend the text. However,
each basic element within a complex prompt is not
complicated for SDXL to understand and gener-

ate. Therefore, by breaking down complex texts
into basic elements, BACON can significantly as-
sist SDXL in simplifying complex tasks. Specifi-
cally, SDXL can first create the background, then
sequentially generate each object, and finally as-
semble the different parts. Currently, there are
many methods that can be utilized for image stitch-
ing, such as Anydoor (Chen et al., 2024), Collage
Diffusion (Sarukkai et al., 2024), etc. Sometimes,
images can also be directly stitched together and
then refined using SDXL as the base model, with
SDEdit (Meng et al., 2021) for refining the images,
but this typically requires the images to be rela-
tively simple. Aside from generating individual
parts of the image and then stitching them together,
another approach is to sequentially inpaint (Rom-
bach et al., 2022) objects onto the image using
inpainting methods.
More results. We provide more examples in Fig-
ure 19

A.4.7 Precision & recall and user study
When calculating precision and recall, it involves
identifying which objects have been predicted by
different captioners. For other captioners, this can
be challenging because directly extracting nouns
would include many nouns that cannot be consid-
ered objects. Therefore, we utilize VLMs to accom-
plish this task. Specifically, we input the model’s
captions into the VLMs, requesting them to ex-
tract the important objects contained within. For
BACON-Captioner, this process is straightforward
because BACON explicitly provides a list of objects.
This also highlights the advantages of BACON.

A.4.8 Additional capabilities of captioner
Evaluation metrics. Evaluating the performance
of the planning task is a subject that hasn’t been
widely discussed. As one of the pioneers, Lay-
outGPT (Feng et al., 2024) collected some images
from the COCO dataset (Lin et al., 2014), which
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have varying numbers of objects of the same cat-
egory and used precision and recall as evaluation
metrics to assess whether the quantity of objects
planned is accurate. Inspired by their approach, we
have slightly expanded the concepts of precision
and recall. We randomly sample 1000 images from
COCO and use their official captions as input for
either LayoutGPT or BACON-Captioner. Then, we
apply precision and recall metrics to assess how
many of the objects predicted by different plan-
ning methods actually exist in the images, and how
many objects present in the images are predicted.

It’s important to note that both the captioner
and LayoutGPT operate in an open-vocabulary
manner. Hence, we used CLIP to map the open-
vocabulary predictions to COCO’s fixed set of cat-
egories. Specifically, for an open-vocabulary pre-
diction, we compute its similarity to all categories
in COCO, treating the similarity as logits, and then
use a softmax function to map it to a category in
COCO. If the softmax score for the most likely
category exceeds a threshold (0.9 here), we con-
sider the prediction to be correct; otherwise, it is
deemed incorrect. In BACON dataset, the situa-
tion is quite similar. A slight difference is that the
model’s predictions are mapped onto the list of
ground truth objects for the current image, rather
than a fixed set of categories. Similarly, when the
softmax score exceeds a certain threshold, it is con-
sidered a correct prediction. Given that BACON

benchmark is significantly more challenging than
COCO, if the threshold is set too high, almost all
predictions would be incorrect; hence, we lowered
the threshold to 0.5.

Precision and recall do not take into account the
positioning of the planning. This is because evaluat-
ing whether a position is appropriate is a subjective
task, and so long as it is reasonable, it should suf-
fice. Nonetheless, since the positional distribution
in the original images is assuredly reasonable, we
can also use the positions in the original images
as a certain reference. Therefore, we calculated
the mean Intersection Over Union (mIOU) of the
positions of the objects in the planning compared
to those in the original images, and used this as an
evaluation metric.
Examples. We provide two examples (as shown
in Figures 17 and 18) to demonstrate how BA-
CON transforms a standard prompt into the format
we need. Example in Figure 17 features a simple
prompt; in this scenario, the BACON-Captioner of-
ten imagines additional objects not present in the

prompt to enrich the overall scene and converts
it into the required format. Conversely, Example
in Figure 18 involves a more complex input; in
such cases, the likelihood of the BACON-Captioner
adding new objects is reduced.

A.4.9 BACON on video captioning
We provide more examples (as Figures 20 and 21)
as a supplementary of the main paper.
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Overall description:
Style：'The image is a photograph with a realistic style.'
Theme：'The theme of the image is transportation, specifically a train traveling through a rural landscape.'
Background description：'The background of the image features a rural landscape with elements of nature and infrastructure. There is a 
bridge with green metal railings crossing over the train tracks. Beyond the bridge, a fence made of wooden posts and rails encloses a field. 
The field appears to be grassy with some patches of bare earth. The sky is overcast, with a pale, diffused light suggesting an overcast or 
cloudy day.'
Foreground description: 'In the foreground, a train is captured in motion on the tracks. The train is painted in a blue and yellow color 
scheme. The train has multiple carriages, and the windows reflect the surrounding environment. The tracks are made of steel rails with 
wooden sleepers, and they run parallel to a grassy embankment on the left side of the image.'

Object list:
Train:

Category: inanimate, foreground 
Description: 'The <train> ‘s body is long and sleek, with <windows> lined along its side. The front <car> has a curved nose 
with a destination <sign> and <headlights>. The <train> is composed of several <carriages> connected together.’
Color: blue and yellow 
Position: [200, 160, 441, 367] 

Track:
Category: inanimate, foreground 
Description: 'The <track> consists of parallel <steel rails> supported by wooden <sleepers>. It stretches into the distance, 
guiding the <train>.’
Color: rusty brown rails, brown sleepers 
Position: [128, 112, 553, 425] 

Bridge:
Category: inanimate, background 
Description: 'The <bridge> spans over the <tracks> with a structure made of metal <beams> and <railings>. It appears 
functional and unadorned.’
Color: green railings 
Position: [54, 95, 271, 160]

Fence:
Category: inanimate, background
Description: 'The <fence> is constructed of wooden <posts> and <rails>, enclosing the <field> and providing a boundary.’
Color: natural wood tone
Position: [274, 137, 638, 184] 

Field: 
Category: inanimate, background
Description: 'The <field> is predominantly grass-covered, with some areas of bare <soil>. It is bordered by the <fence> and 
<trees>.’
Color: green grass, brown soil
Position: [283, 161, 638, 421] 

Tree: 
Category: inanimate, background
Description: 'The <trees> have bare branches, indicating a lack of <leaves> which could suggest a seasonal change.’
Color: dark brown branches
Position: [207, 0, 404, 146] 

Sky: 
Category: inanimate, background
Description: 'The <sky> is overcast, with a uniform light grey color, suggesting cloudy weather.’
Color: light grey
Position: [1, 0, 636, 103] 

Relationship:
<Train> [is traveling on] <track>
<Train> [is passing under] <bridge>
<Bridge> [spans over] <track>
<Fence> [encloses] <field>
<Field> [is bordered by] <tree>
<Field> [is bordered by] <Fence>
<Tree> [is standing in] <Field>

Captioner&Grounding

Figure 13: A complete example of BACON.
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Overall description:
Style：'The image is a candid, action-oriented photograph.'
Theme：'The theme of the image is water sports, specifically surfing.'
Background description：The background of the image is dominated by the ocean with its varying shades of blue and white due to the 
churning waves and foam. The water appears dynamic and powerful, suggesting a strong surf. There is no clear horizon line, but the 
waves occupy the majority of the background space, creating a sense of immersion in the ocean environment. The light seems natural, 
likely from the sun, and it enhances the texture of the water and waves. The ocean is the only element in the background, emphasizing the 
vastness and the solitary nature of the surfing activity.'
Foreground description: 'In the foreground, a man is captured in the midst of surfing a wave. He is wearing a cap, shorts, and is shirtless, 
which indicates a warm climate or season. The man is in a semi-crouched position on a surfboard, navigating the wave with a paddle in 
his left hand. His facial expression shows concentration and determination. The surfboard is mostly white with a design on its surface, 
and it cuts through the water, leaving a trail of spray behind. The man's musculature and stance suggest that he is experienced and in 
control of the surfboard. The water around the surfboard is turbulent, with foam and spray being generated by the movement of the 
surfboard and the wave.'

Object list:
Man:

Category: living, foreground 
Description: 'The <man>’s <torso> is bare, and he is wearing a <cap> on his <head>. His lower body is covered by <shorts>. 
He is in a semi-crouched position on the <surfboard>, holding a <paddle> in his left hand. His facial expression shows 
focus.’
Color: skin tone, green shorts, white cap 
Position: [200, 201, 270, 288] 

Surfboard:
Category: inanimate, foreground 
Description: 'The <surfboard> is under the <man>, supporting him as he rides the <wave>. It has a design on its surface and 
is cutting through the <water>.’
Color: predominantly white with a design
Position: [178, 285, 283, 326] 

Paddle:
Category: inanimate, foreground 
Description: 'The <paddle> is held by the <man> in his left hand, assisting him in navigating the <wave>.’
Color: black shaft, white blade
Position: [103, 171, 266, 271]

Wave:
Category: inanimate, background
Description: 'The <wave> is large and powerful, with <water> churning and creating <foam> and <spray> as it breaks.’
Color: shades of blue and white
Position: [2, 63, 638, 422] 

Ocean: 
Category: inanimate, background
Description: 'The <ocean> fills the background, characterized by its dynamic <waves> and <foam>.’
Color: various shades of blue 
Position: [2, 2, 638, 424] 

Relationship:
<Man> [is riding] <Surfboard>
<Man> [is holding] <Paddle>
<Surfboard> [is cutting through] <Wave>
<Wave> [is breaking around] <Man>
<Man> [is surfing on] <Ocean>
<Ocean> [is supporting] <Surfboard>

Captioner&Grounding

Figure 14: A complete example of BACON.
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%%Part1: Overall descrip2on%%
&&Part1.1: Style&&
The image is a photograph with a realis2c style.
&&Part1.2: Theme&&
The theme of the image is urban transporta2on during twilight.
&&Part1.3: Global descrip2on of background&&
The background of the image consists of an overcast <sky> with a gradient of blue tones, transi2oning from a deeper blue at the top to a <lighter> 
hue near the horizon. A large, modern <structure> labeled "DOKK1" dominates the leM side, featuring an angular design with illuminated 
<windows>. To the right is a tall <building> with numerous <windows>, some of which emit a warm glow. Further back, there are more <city 
buildings> with varying architectural designs, including one with a greenish <glass façade>. The <ambient ligh2ng> suggests it is either dawn or 
dusk, with <ar2ficial lights> beginning to have a pronounced effect on the scene.
&&Part1.4: Global descrip2on of foreground&&
The foreground shows a <city street scene> with mul2ple <lanes>. A <tram> is on the leM, labeled “L2 Aarhus H" and displaying a <des2na2on sign>. 
It is sta2oned at what appears to be a <tram stop>, with a <plaWorm> and a <railing>. The <street> is busy with <cars>, all with <headlights> on, 
indica2ng low light condi2ons. The <vehicles> vary in size and shape, sugges2ng a mix of personal and commercial <traffic>. The <pavement> along 
the <street> is wet, reflec2ng the lights of the <tram> and nearby <street lamps>. The overall <atmosphere> is one of a bustling <urban 
environment> in the evening hours.

%%Part2: List of objects%%
<Sky> (Inanimate; background; The <sky> presents a gradient of <blue> shades and is sca^ered with <clouds>; Color informa2on: shades of <blue>.)
<Building 1> (Inanimate; background; The <building> has an angular <design> with <windows> that are illuminated from within; Color informa2on: 
<black> and <yellow> lights.)
<Building 2> (Inanimate; background; This <building> is tall with many <windows>, some of which are lit, and has a cylindrical <shape>; Color 
informa2on: <white> with <yellow> lit windows.)
<Building 3> (Inanimate; background; Visible behind <Building 1>, this <building> features a <glass façade> with a <greenish> hue; Color 
informa2on: <green> glass and <gray> structure.)
<Tram> (Inanimate; foreground; The <tram> is sta2onary with a <front display> showing its <route> and a <design> that is sleek and modern; Color 
informa2on: predominantly <white> with <black> and <blue> accents.)
<Street> (Inanimate; foreground/background; The <street> shows <lanes> with mul2ple <vehicles> and <wet> condi2ons reflec2ng <lights>; Color 
informa2on: <dark gray> asphalt, <white> road markings.)
<Car 1> (Inanimate; foreground; A <car> with its <headlights> on, driving on the <street>, exhibi2ng a <sedan> body style; Color informa2on: 
<black>.)
<Car 2> (Inanimate; foreground; Another <car> follows <Car 1>, also with <headlights> on, and appears to be a <hatchback>; Color informa2on: 
<silver>.)
<Car 3> (Inanimate; foreground; This <car> is in the <lane> closest to the <camera>, showing a <compact> shape with <headlights> on; Color 
informa2on: <dark blue>.)
<Lamppost> (Inanimate; background; A <lamppost> stands tall with a <light> at the top, illumina2ng the <area> below; Color informa2on: <black> 
post, <white> light.)

%%Part3: Rela2onships%%
<Sky> [overarches] <Buildings>.
<Building 1> [is adjacent to] <Tram>.
<Building 2> [towers over] <Street>.
<Building 3> [is situated behind] <Building 1>.
<Tram> [is sta2oned at] <Street>.
<Tram> [reflects on] <Street>.
<Car 1> [drives on] <Street>.
<Car 2> [follows] <Car 1>.
<Car 3> [is closest to] <Camera>.
<Lamppost> [illuminates] <Street>.

GPT4v

Instruction

Figure 15: An example of BACON in string format obtained by GPT-4V.
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Hello, I would like to ask for your help in describing an image. Please note that I would like the description to be as 
detailed as possible. Please strictly respond following my instructions and do not print any redundant words.

This description needs to include three parts. The title of each part should be ‘%%Part1: Overall description%%’, ‘%%Part2: 
List of objects%%’, and ‘%%Part3: Relationships%%‘. All important nouns in your response have to be bounded by '<' and 
'>’!

The first part is an overall description of the image. Your answer to this part should consist of three parts, one sentence to 
describe the style of the image, one sentence to describe the theme of the image, and several sentences to describe the 
image. The titles of these parts are '&&Part1.1: Style&&', '&&Part1.2: Theme&&', '&&Part1.3: Global description of 
background&&', 'Part1.4: Global description of foreground&&'. The global description should be as detailed as possible 
and at least 150 words in total. If there is text content in the image, you can also describe the text, which should be bound 
by quotation marks. All important nouns in your response have to be bounded by '<' and '>’!

The second part is to list all the objects in the image, as many as possible, in order of importance. Note that any object 
should not be a part of other objects. Note that the listed object should not be the plural. If there are multiple individuals 
of the same category of objects, please list them separately. For example, if there are three apples in the picture, they 
should be listed as 'Apple 1,' 'Apple 2,' and 'Apple 3.', respectively. Additionally, the objects should be classified into two 
categories: living and inanimate objects. Living refers to creatures such as humans, cats, dogs, and plants, while other 
lifeless objects belong to the category of inanimate objects. Finally, each object should have a very detailed description, 
with more important objects receiving more detailed descriptions. Each description should be at least 30 words and the 
important nouns in it have to be bounded by '<' and '>'. You should also identify whether this object belongs to the 
foreground or background. You should additionally provide a sentence to describe the color information of the object. 
Therefore, the format for listing each object should be 'Object Name (Category (Living/Inanimate); 
foreground/background; Description; Color information)'. Specifically, the detailed description of an object should focus 
on its part and its action. All descriptions should be in the forms of, object's + part + verb + object/adjective or object + is + 
present participle. The description should be detailed as well as possible, and try to describe all parts of this object. You 
should specifically notice if there is a sky, tree, sun, or other object in the background of the environment. All important 
nouns in your response have to be bounded by '<' and '>’!

The third part is to describe the relationships between all the objects in pairs. Please list them one by one. Additionally, 
please describe the relationship between object A and object B in the format of 'Object A' + 'Action' + 'Object B.' Please 
don't print the same relation twice. For example, if there is “A relation B”, you shouldn't print 'B relation A' again. All 
important nouns in your response have to be bounded by '<' and '>’!

I will provide you with an example of the last two parts of a description to show you the desired format. You should only 
focus on the format of this example instead of the content of it. You should use the same format to respond.

"%%Part2: List of objects%%
<Woman> (Living; foreground; The <woman>'s <hair> is bundled in a <scarf>. Her <torso> is covered with a <black shirt>. 
Her <lower body> is clad in <blue jeans>. Her <legs> move through the <water>. Her <right hand> holds a pair of <shoes>; 
Color information: <black> shirt, <blue> jeans, <orange> scarf.)
<Water> (Inanimate; foreground/background; The <water> floods the <street>, reflecting the <sky> and <surrounding 
objects>; Color information: <murky blue-grey>.)
<Building 1> (Inanimate; background; The <building> has a <façade> with <doors> and <windows>, showing signs of 
<water damage>; Color information: <pale yellow>.)
<Building 2> (Inanimate; background; This <building> is similar to <Building 1> but with a <red> roof visible above the 
<flood>; Color information: <light orange> walls, <red> roof.)
<Vehicle 1> (Inanimate; background; A <vehicle> is partially submerged, showing only the <roof> and <upper parts>; Color 
information: <white>.)
<Vehicle 2> (Inanimate; background; Another <vehicle>, also partially submerged, with a <visible logo>; Color information: 
<silver>.)
<Sky> (Inanimate; background; The <sky> is filled with <clouds>, implying recent or ongoing <precipitation>; Color 
information: <gray>.)
%%Part3: Relationships%%
<Woman> [is walking through] <Water>.
<Woman> [is moving away from] <Camera>.
<Water> [reflects] <Sky>.
<Water> [surrounds] <Vehicles>.
<Buildings> [line] <Street>.
<Vehicle 1> [is submerged by] <Water>.
<Vehicle 2> [is submerged by] <Water>.
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Figure 16: The instruction for GPT-4V to obtain BACON from an image. We highlight the parts involving specific
examples in orange.
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A cat and a dog gather around a pizza on the highway.
BACON-
Captioner

Overall description
Style: The image is a candid, real-life photograph with a humorous setup. 
Theme: The theme of the image is an unexpected interaction between animals and human food.
Background description: The background of the image features a highway setting with a large, dark-colored rock 
on the left side and a scrapped car on the right. The sky is overcast, with a dull, uniform gray tone suggesting an 
overcast or cloudy day. The highway itself is made of asphalt and has visible lane markings. The rock and car 
appear to be out of place on the road, indicating a possible scene of an accident or roadside debris. There are no 
visible people or moving vehicles, which adds to the stillness of the scene.
Foreground: In the foreground, a cat and a dog are positioned on the road, closely inspecting a pizza that lies 
between them. The cat, on the right, is leaning forward with its head down, sniffing or showing interest in the pizza. 
The dog, on the left, mirrors the cat's posture, with its nose also directed towards the pizza. The pizza itself is large, 
with visible toppings that include cheese and pepperoni. The animals' proximity to the pizza and their focused 
attention on it create a humorous and unexpected scene, as it is unusual to see wild animals interacting in such a 
human-like manner. The road surface is a faded gray, and the animals' fur appears well-defined against this 
backdrop.

Object list
① Name: Cat;  Category: Animal, foreground;  Description: The cat's body is arched slightly as it leans over the 
pizza. Its head is lowered towards the pizza, its eyes seem to be focused on the food, and the cat's fur is dark blue;  
Color: dark blue;  Position: [677, 178, 981, 361]

② Name: Dog;  Category: Animal, foreground;  Description: The dog is standing with its body angled towards the 
pizza. Its head is also lowered to get a closer look at the pizza. The dog has fur that appears to be short and smooth;  
Color: dark gray;  Position: [45, 167, 375, 423]

④ Name: Pizza;  Category: Inanimate, foreground;  Description: The pizza is round with a crust and several 
toppings that include cheese and pepperoni. It is placed directly on the road surface;  Color: golden crust, red 
pepperoni, yellow cheese;  Position: [428, 183, 632, 324]
⑤ Name: Rock;  Category: Inanimate, background;  Description: The rock is large and irregularly shaped, with a 
rough texture and a dark color that contrasts with the asphalt of the highway;  Color: dark gray;  Position: [281, 537, 
488, 649]
⑥ Name: Scrapped Car;  Category: Inanimate, background;  Description: The scrapped car is heavily damaged, 
with twisted metal. It is positioned on its side, suggesting it was involved in a severe accident;  Color: rusty and 
metallic tones;  Position: [584, 478,  852,  655]

Relationship
① < Dog > on the left side of < pizza >           ② < Cat > on the right side of < pizza > 

       ③ < Pizza > is lying on < highway >         ④ < Rock > is blocking < highway >
       ⑤ < Rock > is adjacent to < Scrapped Car >  ⑥ < Scrapped Car > is blocking < highway>

Figure 17: An example of how BACON-Captioner transforms a brief prompt into the distinctive style of
BACON.
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Under the bright moon, there is an icy sky and snow. In the 
center of the scene, a bonfire blazes. To the left of the bonfire 
are an arctic fox and a polar bear, to the right is a penguin, and 
above the bonfire flutters a small ice butterfly.

Overall description
Style: The image is a color photograph with a clear focus and a balanced composition.
Theme: The theme of the image is a serene, wintery scene featuring various arctic animals gathered around a warm bonfire.
Background description: The background of the image is mainly the bright moon in the upper part of the screen. Below the 
sky, the horizon is lined with a layer of snow that blankets the ground, reflecting the light from the bonfire and creating a 
contrast with the dark sky. The snow appears to be undisturbed except for the area immediately around the fire, where it is 
melted.
Foreground: In the foreground, the central focus is the bonfire, with vibrant flames leaping upwards, casting a warm glow 
on the surrounding snow. The fire's light illuminates the figures of the animals and the snow around them. To the left of the 
fire, an arctic fox sits attentively, its fur appearing thick and white. To the right, a polar bear sits with a relaxed posture, its 
white fur contrasting with the darker elements of the scene. In front of the fire, a penguin stands out with its black and white 
coloring, with its back facing the camera. Above the fire, an ice butterfly with outstretched wings adds a whimsical touch to 
the scene. The animals are positioned on a flat surface, likely a frozen body of water, as indicated by the presence of the ice 
butterfly and the reflection of the fire on the snow.

Object list
①Name: Arctic Fox;  Category: Animal, foreground;  Description: The arctic fox's body is facing the camera, with its head 
turned slightly to the side. Its fur is thick and white;  Color: White;  Position: [153, 235, 337, 419]
②Name: Polar Bear;  Category: Animal, foreground;  Description: The polar bear is sitting with its body oriented away 
from the camera. Its fur is thick and white, and its head is turned to the side, giving a profile view;  Color: White;  Position: 
[266, 264, 481, 627]
③Name: Penguin;  Category: Animal, foreground;  Description: The penguin stands with its body turned away from the 
camera, its head slightly tilted. It has black back and white belly;  Color: Black back, white belly;  Position: [471, 154, 614, 
416]
④Name: Bonfire;  Category: Inanimate, foreground;  Description: The bonfire consists of flames leaping upwards from a 
pile of wood. The fire is bright and orange, casting light on the surrounding snow;  Color: Orange flames, brown and black 
wood;  Position: [307, 204, 614, 409]
⑤Name: Ice Butterfly;  Category: Animal, foreground;  Description: The ice butterfly is positioned above the bonfire, with 
its wings spread wide. It appears to be made of ice and is translucent with a white hue;  Color: Translucent with a white tint;  
Position: [378, 768, 450, 896]

Relationship
① < Arctic Fox > on the left side of < Bonfire >           ② < Arctic Fox > sits near < Polar Bear> 

     ③ < Polar Bear > on the right side of < Arctic Fox > ④ < Penguin > in front of < Bonfire > 
 ⑤ < Ice Butterfly > floats above < Bonfire >                ⑥ < Polar Bear > sits beside < Bonfire>

BACON-
Captioner

Figure 18: An example of how BACON-Captioner transforms a relatively complex prompt into the distinctive
style of BACON.
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Caption BACON + SDXL DALL-E 3 SDXL

In the deep sea, an abandoned large ship full of 
marine life sank to the bottom of the sea. There 
are two blue balloons floating in front of the ship. 
There is a dolphin swimming below the balloon. 
There is a drifting bottle floating in the deep sea, 
inside which is a sailboat

In a yoga studio, there is an artwork of a green 
jade dragon, with a white cat lying on the right 
side of the artwork. On the distant ground, against 
the wall, there is a painting depicting war

On a pink night, there was a pool in the center of 
the lawn, and a purple sports car was floating on 
the pool. There was a light bulb on the hood of the 
sports car, and there was an orange goldfish in the 
bulb. On the left side of the car is a small, colorful 
robot

There is a small river in the forest, and there is a 
stone bridge on the river. There is a golden 
praying mantis on the bridge. There is a 
mongoose standing by the riverbank, and to its 
right lies a turtle

In an abandoned factory building, sunlight filtered 
in. A technologically advanced spaceship flies 
over the factory building. Listening to a 
motorcycle below the spaceship, there is a pink 
guitar on the ground to the right of the motorcycle.

In an old-fashioned subway station, there is a 
emerald green lion, a gray white wolf, and a 
colorful paper crane standing together waiting for 
the subway

Figure 19: Additional examples of BACON on image generation.
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Example 1: Dog Category 1: Living Category 2: Foreground
Description: The dog has a fluffy white coat and appears to be a small breed. It is looking up 
towards the person and is attached to a leash.
Color: white coat.
Example 2: Bicycle Category 1: Inanimate Category 2: Foreground
Description: The bicycle's frame is supporting person. Its wheels are in contact with the grass. 
The handlebars are being gripped by person's hands. A backpack is attached to the bicycle's rear 
rack.
Color: silver frame, black tires, blue backpack.

Example 1: Dog Category 1: Living Category 2: Foreground
Description: The dog has a fluffy white coat and appears to be a small breed. It is looking up 
towards the person and is attached to a leash.
Color: white coat.
Example 2: Sidewalk Category 1: Inanimate Category 2: Background
Description: The sidewalk is a concrete path that borders the lawn and leads towards the house. It 
is typical of suburban streets.
Color: gray.

Example 1: Dog Category 1: Living Category 2: Foreground
Description: The dog has a fluffy white coat and appears to be a small breed. It is looking up 
towards the person and is attached to a leash.
Color: white coat.
Example 2: Text Category 1: Inanimate Category 2: Foreground
Description: The text is superimposed on the image in the lower part, stating 'Thirteen years 
earlier’.
Color: white on a semi-transparent background.

Example 1: Dog Category 1: Living Category 2: Foreground
Description: The dog has a fluffy white coat and appears to be a small breed. It is looking up 
towards the person and is attached to a leash.
Color: white coat.
Example 2: Sky  Category 1: Inanimate Category 2: Background
Description: The sky is clear and blue, indicating good weather and no visible clouds.
Color: blue.

l New item compared to last frame l Changed item compared to last frame l Deleted item compared to last frame

car dog sky tree lawn text house child person bicycle sidewalk

car dog sky tree lawn text house child person bicycle sidewalk

car dog sky tree lawn text house child person bicycle sidewalk

car dog sky tree lawn text house child person bicycle sidewalk
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Note: Considering the limited drawing space and beauty of graph structure, we have performed some simplification for relationships that appear more than once.

Figure 20: An additional example of BACON on video captioning.
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Example 1: SUV Category 1: Inanimate Category 2: Background
Description: The vehicle has a prominent Mercedes-Benz emblem on the front grille, which is a 
three-pointed star encircled. … The overall condition of the car looks well-maintained, with no 
apparent damage or wear.
Color: silver body, black spare tire cover, black tinted windows.
Example 2: Flower1 Category 1: Living Category 2: Foreground
Description: The flower1 in the picture is a red rose, bright red, with layered petals that appear to 
be in full bloom. A large number of green leaves cluster around the flowers.
Color: red petals, green leaves.

Example 1: SUV Category 1: Inanimate Category 2: Foreground
Description: The vehicle has a prominent Mercedes-Benz emblem on the front grille, which is a 
three-pointed star encircled. … The overall condition of the car looks well-maintained, with no 
apparent damage or wear.
Color: silver body, black spare tire cover, black tinted windows.
Example 2: Flowers Category 1: Living Category 2: Background
Description: The flower in the picture is a red rose, bright red, with layered petals that appear to 
be in full bloom. A large number of green leaves cluster around the flowers
Color: red petals, green leaves.

Example 1: SUV Category 1: Inanimate Category 2: Foreground
Description: The vehicle has a prominent Mercedes-Benz emblem on the front grille, which is a 
three-pointed star encircled. … The overall condition of the car looks well-maintained, with no 
apparent damage or wear.
Color: silver body, black spare tire cover, black tinted windows.
Example 2: Road Category 1: Inanimate Category 2: Foreground
Description: A smooth and flat concrete road. The road condition is good, with no obvious cracks 
or severe wear. There are no visible markings or markings on the road.
Color: gray

Example 1: SUV Category 1: Inanimate Category 2: Foreground
Description: The vehicle has a prominent Mercedes-Benz emblem on the front grille, which is a 
three-pointed star encircled. … The overall condition of the car looks well-maintained, with no 
apparent damage or wear.
Color: silver body, black spare tire cover, black tinted windows.
Example 2: Car  Category 1: Inanimate Category 2: Background
Description: A small, red car with a hatchback design. The vehicle is captured in motion. It has 
black windows, silver wheels
Color: red body, black windows, silver wheels.

SUV tree road fence flower red car

SUV tree road fence flower sky house person sidewalk street lamp lawn carcar

SUV tree road fence flower sky house person sidewalk street lamp lawn

l New item compared to last frame l Changed item compared to last frame l Deleted item compared to last frame

SUV tree1 road fence1 fence2 sky house person sidewalk street lamp lawn car

SUV tree1 road fence1 flower1 sky house person sidewalk street lamp lawn

SUV tree1 road fence1 flower1 sky house person sidewalk street lamp

SUV tree1 road fence1 flower1

Note: Considering the limited drawing space, some similar objects with different names are omitted here. For relationships that appear more than once, we have performed some simplification.

Figure 21: An additional example of BACON on video captioning.
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